博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
支持向量机
阅读量:5121 次
发布时间:2019-06-13

本文共 367 字,大约阅读时间需要 1 分钟。

2017-07-22  09:21:37

       
在机器学习中,支持向量机(SVM,还称支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。给定一组训练样本,每个标记为属于两类,一个SVM训练算法建立了一个模型,分配新的实例为一类或其他类,使其成为非概率二元线性分类。一个SVM模型的例子,如在空间中的点,映射,使得所述不同的类别的例子是由一个明显的差距是尽可能宽划分的表示。新的实施例则映射到相同的空间中,并预测基于它们落在所述间隙侧上属于一个类别。
       除了进行线性分类,支持向量机可以使用所谓的核技巧,它们的输入隐含映射成高维特征空间中有效地进行非线性分类。
       以下为相关总结。

 

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/guojincheng666895/p/7220391.html

你可能感兴趣的文章
如何在maven工程中加载oracle驱动
查看>>
Flask 系列之 SQLAlchemy
查看>>
aboutMe
查看>>
【Debug】IAR在线调试时报错,Warning: Stack pointer is setup to incorrect alignmentStack,芯片使用STM32F103ZET6...
查看>>
一句话说清分布式锁,进程锁,线程锁
查看>>
python常用函数
查看>>
FastDFS使用
查看>>
服务器解析请求的基本原理
查看>>
[HDU3683 Gomoku]
查看>>
【工具相关】iOS-Reveal的使用
查看>>
数据库3
查看>>
存储分类
查看>>
下一代操作系统与软件
查看>>
【iOS越狱开发】如何将应用打包成.ipa文件
查看>>
[NOIP2013提高组] CODEVS 3287 火车运输(MST+LCA)
查看>>
Yii2 Lesson - 03 Forms in Yii
查看>>
Python IO模型
查看>>
Ugly Windows
查看>>
DataGridView的行的字体颜色变化
查看>>
Java再学习——关于ConcurrentHashMap
查看>>